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Abstract, We study the problem of leaming and retrieving for a pair of correlated panems 
within an extensive number of uncorrelaled pattems, for networks where leaming may be treated 
as an optimization process with respect to an arbitrary wst function. This formulation is then 
applied to several specific examples, where we study the paltern seleclivily of lhese systems (i.e. 
lheir ability to differentiate wrrelated p a m s )  and investigate the process of basin shrinking 
with increasingloading levels. We & h e  and discuss several diflerent remeval phases, whose 
existence depends on the competitive interplay of the loading level and the P a m  correlation. 
Discussion of asymptotic retrieval is restricted to dilute asymmetric networks. 

1. Introduction 

Neural networks consisting of simple processing units are able to perfom various 
computational tasks such as generalization, categorization, optimization, leaming or 
functioning as associative memory [l]. Specifically, the retrieval of stored binary patterns 
in associative memories has been studied in great depth. It is based on the notion that 
cognitive acts are identified with the network state approaching an attractor in the long-term 
behaviour. 

In the earliest works the concepts or patterns to be memorized were stochastically 
uncorrelated or unbiased. Even so, such patterns give rise to competing instructions during 
the leaming and retrieving stages of the network, especially when the network is required 
to store many patterns. On the other hand, there are many applications in which correlated 
patterns are stored in neural networks, and competitive effects %e expected to be even more 
serious. 

It has been demonstrated that in the Hopfield model of neural networks [2,3], the 
presence of competition between the stored patterns can give~rise to spurious states which 
plague the dynamics of the system. When two patterns are correlated with each other, there 
may exist a confitsed state in which the system can retrieve the common features of the 
patterns, but be unable to differentiate the individual patterns. This'is quite a universal 
feature, and has been demonstrated in both fully connected [4] and dilute asymmetric [5] 
neural networks. 

However, although correlated pattems are easily confused in Hopfield networks in which 
the learning rule is the Hebb rule, it is interesting to study whether the selectivity of 
systems (i.e. their ability to differentiate correlated pattems) can be increased by considering 
a broader class of learning rules. It has been shown that the conventional Hebb rule 
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is equivalent to optimizing an appropriate cost function 16.71. In the present work we 
generalize the treatment of correlated patterns to other leaming rules which can be considered 
as the result of the application of optimization procedures, thereby clarifying the notion of 
pattern selectivity in amactor neural networks (ANN) for different learning rules-a problem 
highly relevant to pattem recognition applications. 

Depending on the application of the network, one may require high or low pattem 
selectivity. When one wants to retrieve single stored pattems out of a set of possibly 
correlated ones, networks with high selectivity are needed. On the other hand, there are 
situations which require panems to be mixed, so that more complex computations can be 
camed out 18.91. 

The analysis of pattem selectivity for different leaming rules allows one to study the 
differences in structure of attractor basins. The Hebb rule, for example, has a low pattem 
selectivity [5 ] ,  which may be attributed to its wide but imperfect (with respect to the pattem 
to be retrieved) basin structures. Confusion can be understood as the interference of basins, 
which is more likely in the case of wide basins. On the other hand, we will demonstrate 
that the maximally stable network (MSN) [lo] and the pseudo-inverse network (PIN) [ll, 121 
have high pattern selectivities, which may be attributed to deep perfect basin smctures. 

The treatment of the retrieval dynamics in networks storing a r b i e l y  many correlated 
pattems with distributed (i.e. not constant) [13] stabilities may be quite involved We shall 
therefore restrict ourselves to examples with only two non-orthogonal patterns among an 
extensive number of uncorrelated ones, in which case we can derive a general formalism 
to treat optimized networks, and show for specific choices of the cost functions that the 
iterative maps for the overlaps in an asymmetrically highly diluted network yield a very 
rich behaviour. Preliminary results have been presented in [14]. 

Our paper is structured in the following way: in section 2 we derive iterative maps for 
the two correlated patterns, which are determined by appropriate aligning field distributions 
in the network. We discuss the role of leaming as an optimization process and give a 
general method of deriving the coupled aligning field distributions, built on our work on 
uncorrelated p m m s  [7]. In section 3 we analyse the iterative maps for the Hebb rule, the 
pseudo-inverse rule and the maximally stable network with tools from non-linear dynamics. 
In section 4 we summarize our work and point out possible directions for future research. 

2. The model 

2.1. The general dynamics 

We consider a network of N neurons, each being fed on average by C others through the 
synaptic connections {J; j  from neuron j to i } .  The network is trained to store p = nC 
binary patterns $' = +I,  where j = 1,. . . , N and p = I , .  . . , p .  Two patterns, say 1 and 
2, are correlated with EL . E' = Q, where we use a normalized scalar product definition: 
a b E xi aihi I N .  The other patterns are uncorrelated. among themselves and with the 
first two. In order to make our model more tractable and to gain insight into the domains 
of attraction, we will restrict our analysis to a highly and asymmetrically diluted network 
[5] in the thermodynamic limit with N + CO, C + 00 and IimN,, In N /  In C = 00, so 
that the retrieval behaviour can be readily analysed in terms of iterative coupled maps of 
two macroscopic order parameters. 

We consider synchronous dynamics (where all neumns are updated at the same time) 
or asynchronous dynamics (where the neurons are randomly chosen and updated) according 
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to the updating rule 

where r ( f )  is a Gaussian random variable of mean 0 and width 1. T is a measure of the 
strength of the stochastic noise (temperature). 

As a first step we generalize the one-step dynamics derived earlier [I5471 for a network 
whose configuration has a macroscopic overlap with only one pattem. 

We are interested in the dynamics of network states having a macroscopic overlap with 
two correlated patterns, 1 and 2. Our system can then be described in terms of the two 
(overlap) order parameters m, and md 

where Q* E ( I  =k Q)/Z and the vector S describes the state of the system at a certain 
instance; here we have introduced the notion of two sets of sites, one, labelled S (for 
‘same’), for the sites j where and another, 2, (for ‘different’), for the sites j where 
6: =,-e,?. Subscripts s / d  are used to refer to macroscopic parameters associated with the 
two sets S/D respectively. 

For synchronous dynamics, we can express the average order parameters (2) at time 
t f l b y  

= 

m,/d(t + 1) = ( (sgn(h ’ (0  + Wt))) , )s(o) .sp (3) 

where (. . .)r indicates the average over the retrieval noise, hf( t )  is the local field at site i 
relative to $?, defined by h”r) ~E cf J i j S j ( t ) / f i  where the prime on the summation 
signifies that it is restricted to sites feeding that under consideration. and (. . .)q,).sp denotes 
the average over the configurations S(t) for sites i within the sets S/V commensurate with 
m,/d(t). We assume that the site average can be replaced by an ensemble average over the 
patterns and in (3) and hereafter we omit the site subscript i. 

Since the Sj(t) are independent random binary variables, we can apply the central limit 
theorem. One can easily see then that hi is a Gaussian distributed variable with mean 
(signal) 

and variance (noise) 

U’ Z 1 - Q+(mB(0))’ - Q-(md(o))’+ T’ (5) 

where we have introduced the normalized aligning fields &Id = x;Es,a F I J , E ) / G  
for the two sets of sites. 

With an appropriate choice of ( J i j ] ,  the iterative dynamics will result in a movement of 
the state configuration of the network towards an attractor. The attractor may be of retrieval, 
non-retlieval or spurious character. Using the feature of a highly diluted network that the 
state correlations between different time steps remain microscopic [5 ] ,  the above analysis 
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suffices for any two immediately sequential time steps and we get the dynamical equation 
for synchronous dynamics 

mr/d(f -i 1) = fS /d(m*( t ) ,md( t ) )  

where Dx = ds exp(-xz/2)/& and (. . .)A is a shorthand for the A average over the 
distribution of aligning fields 

(. . .)g,s/n indicates an average with respect to the quenched patterns for the output sites 
in the sets S / D  respectively. The corresponding dynamical equations for asynchronous 
dynamics are 

and lead to the same fixed point structure as (6). 

2.2. The aligningfield distributions 

Learning involves the modification of the synapses J .  It can be effected by dynamical 
processes leading to the minimization of a cost function E(J)  in the space of all possible 
( J ) .  For example, for a specified set of patterns (E”],  E ( J )  may be minimized explicitly by 
means of a ‘simulated annealing’ procedure in which E ( J )  is considered as a ‘Hamiltonian’ 
in the space of ($1, and a ‘thermal distribution’ at an effective annealing temperature T, is 
achieved by an appropriate algorithm, such as the h g e v i n  dynamics 

(9) 
aJ 

VJ E ( J )  + ~ ( 0  _ = -  
at 

where q ( t )  is white noise whose variance scales as T,, and T, is taken gradually to zero. 
We are interested in statistically relevant propeaies and thus in averages over the specific 

pattem sets. We shall also concern ourselves only with separable cost functions which can 
be expressed as 
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where the g(A) are performance functions (to be maximized, hence the minus sign in (10)) 
and the A@ are the aligning fields 

We also restrict discussions to the case of synapses constrained only by having real values 
and satisfying the spherical rule 

j 

Wong and Shemngton [7,18] have shown how the results of statistical averaging over 
systems minimizing such separable E ( J )  can be obtained analytically via an extension of 
the replica method of Gardner and Demda [lo, 191. The original work on uncorrelated 
patterns [7, 181 can be generalized to the present case. An outline of the new aspects of the 
analysis is given in appendix A. 

As long as the number of correlated pattems is finite (does not scale with C), the overall 
aligning field distribution 

is unaffected by the correlated pattems in the thermodynamic limit and is given by [7,181 

p ( A )  = J Dt6(A -A@)) (14) 

where A@) is the value of A which maximizes g(A) -(A - C)*/Zy and y is given implicitly 

(15) 

where (Y = p /C ,  p being the number of patterns stored. The joint aligning field distributions 
p,+j(&, Ad) associated with the correlated pattems are given by 

P s / d ( A s ,  A d )  = J D f r D t d a ( &  - A s ( & , f d ) ) a ( A d  - A d ( & ,  t d ) )  (16) 

by 

a-] = J ~ t ( ~ ( t )  - t)* 

where A& f d )  and A&, t d )  are given through maximizing the following function 
1 1 

F = 8 (&As + &Ad) f g @&As F a A d )  - -(A$ - - -(Ad - td)' 
2Y 2Y 

(17) 
and the 'i, T' refer to the construction of ,os/,, respectively. The stationarity criterion for 
the maximum reads 

6 = As - Y d Z  [d  (v'?ZAs i- J e - h d )  zk g' (i&L T a A d ) ]  

td = Ad - Y a [d (&As + a i d )  T g' @&As T a A d ) ]  . 
(18) 

The above result (15) is based on the assumption that the volume of maximum 
performance (or minimum energy) shrinks to a point in the space of interactions as the 
annealing temperature is reduced to zero. For certain performance functions, however, 
there exist some parameter regions in which the volume of maximum performance does not 
shrink to a point at zero temperature, andthis corresponds to the network being below its 
critical storage capacity. Criticality is characterized by the condition that y + CO. AU the 
cases of criticality discussed explicitly below refer to this case. 
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2.3. SpeciJic cost functions 

In this paper, we shall concentrate on three types of network which have received 
considerable attention recently 1201. The performance functions corresponding to these 
networks have been discussed in [21]. 

The first network of interest% referred to as the Hebbian network. Its performance 
function is gHebb(A) = A and for uncorrelated patterns it leads to the same Gaussian 
distributed aligning field [7], as the more conventional Hopfield-Hebb rule Jij = 

The second kind of network i s  one constmcted by maximizing the performance function 
c, gq,”/m. 

(19) gPlN(A) = -?(A 1 - K)* 

where IC is a freely adjustable parameter. If we increase IC to its maximum value I C P ~  such 
that error-free retrieval is still possible, the aligning field distribution of the network takes 
the same form as the one generated by the pseudo-inverse rule, which is characterized by 
constant stabilities. Hence we refer to this as the pseudo-inverse network (PIN). We restrict 
discussion to IC = K ~ I N  where the parameter y -+ W. 

In the third kind of network, we consider a cost function which ensures that all aligning 
fields are larger than a certain value IC 

gMSN(A) = @ ( A  - I C ) .  (20) 

In this case, if we increase IC to its maximum value IC“ such that error-free retrieval is 
still possible the aligning field distribution of the network takes the same form as the one 
generated by the maximum stability rule. Hence we refer to it as the maximally stable 
network (MSN). Again we restrict discussion to criticality, IC = K M S N .  

3. Analysis of specific iterative maps 

Asymptotically in time the system reaches an attractor or limit cycle. The attractors are 
given by the stable fixed points m:,d of the iterative maps which satisfy the equations 

mJ = f d m ; ,  m:) m; = f d ( m f ,  m:). (21) 

There are three structurally different types of attractors and corresponding phases: (i) 
retrieval attracfors with both m; # 0 and mz # 0; (ii) non-retrieval anractors with 
(m;,  m;) = (0,O); (iii) confused atfracfors with m: # 0 but m*, = 0. 

In fact, the dynamical equations (21) are invariant under the following transformations, 

as expected from the fact that the labelling of the two patterns and their complements are 
arbitrary for unbiased patterns. It is therefore sufficient to analyse the iterative maps in the 
first quadrant, where 0 < m , p  6 1. The following results are given for this sector. 
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3.1. The Hebb rule 

Let us first consider the Hebb rule. Substituting gHebb(A) into (18), we find 

which leads to iterative maps of the form 

As these maps decouple their analysis is straightforward, yielding the three phases: (i) 
retrieval phase for a < a-; (ii) confused phase for a- < a < a+; (iii) non-retrieval phase 
for a > a+, where a+(Q, T) = S Q $ / [ i r ( l +  T2)]. In both retrieval and confused phases 
the basins of attraction are maximal (that is they cover all of m-space). 

Figure 1 shows the phase diagram for the Hebb rule at T = 0. The effect of a finite 
temperature is, in this case, only a rescaling of the phase boundaries by the factor [1+T21-'. 
We see that for a near 2/ir a small correlation Q between the pattems is already sufficient to 
create confusion. Therefore the pattem selectivity of such a system is poor. which supports 
the idea that the Hebb rule leads to wide but imperfect basins of amaction. 

20 /I 
1.0 

0.5 . 

0 1'51;--:--:------:_ 0 0 2  0.L 0.6 0.8 0 1.0 io ae text - .  
Figure 1. Phase diagram of lhe Hebbian 
network in the 0 - a  mace. Phases as described 

The iterative maps for the case of T = 0 and for Glauber dynamics at finite tempera" 
have been derived previously by Derrida et ul [5]. Fontanari and Koberle [4] analysed the 
retrieval properties of a fully connected network trained with the Hebb rule and found 
qualitatively the same results; with the onset of the confused phase occurring for slightly 
larger Q % 0.3 and slightly lower ./ac % 0.7. 

3.1 .I. Selectivio for highly correiatedpatterns. It is interesting to investigate the network's 
behaviour when it stores pattems which are strongly correlated. This question is equivalent 
to the issue of where the phase line L(Qi P= 0) ends for Q close to 1. Let us consider 
storing just WO pattems (i.e. a = 2/C) and determine how similar these two pattem may 
be and yet still be distinguishable by the network. 

Assume the two patterns differ on average at d sites, i.e. Q = 1 - 2d/C. The number 
of input sites in the set 73 then follows a Poisson distribution. Since one can easily show 
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that m f  = 1 is a stable fixed point of the dynamics, the iterative map of interest with respect 
to possible confusion is fd given~by 

We know that Sj = *() with probability (1 5 md) /2 .  Thus ford << C we can write 

e-d 

fd(md) = 2 ( i )  (+>1 ( T T - ' s g n ( n  - 2k). (26) 
k=O n. "=O 

One can see that fd(0)  = 0 so that md = 0 is a fixed point of the dynamics. For it to be a 
stable fixed point the following constraint has to be fulfilled 

A brief mathematical analysis yields that ford < 1.849 or Q > 1 - 3.70/C this condition 
is not fulfilled and the Hebb network is unable to distinguish the two patterns. This result 
is the same as that in Boolean networks for high correlations Q [22]. 

3.2. The pseudo-inverse rule 

As a second example we will consider the pseudo-inverse performance function. In order to 
invert (IS), first we note that agPm(A)/aA = -A + K .  This implies that the function Ut )  
is given by h(t)  = (t +- Y K ) / ( ~  + y) .  and approaches a single valued function A@) = K P ~  

at criticality, y = 03. This corresponds to an aligning field distribution of constant stability 
and from (15). we find that a is related to  pm via KPN = for a c 1. The field 
distribution (16) can thus be derived, 

and the iterative maps reduce to 

(2% 
KPl"s/d (4 2(1 -  Q+m? - Q-mi + T 2 )  

f$h. md) = erf 

If one does not insist on the criticality condition y +- CO, it is possible to increase K 

beyond K ~ I N .  Although this introduces error in the aligning field distribution, it has been 
shown that the storage capacity of the attractor network can be increased, and imperfect 
retrieval can be extended to a loading level of a % 1.08 [21]. Nevertheless, we restrict our 
analysis to the regime of K = K ~ W ,  i.e. a c 1. 

The retrieval attractor 
(m,r,md) = (1, I )  is stable for all values of Q for a c 1. To consider the stability of 
the non-retrieval fixed point (ma, md) = (OyO),~we perform a series expansion of (29) 
around it. We obtain 

In the following we restrict analysis of (29) to T = 0. 

* 
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0.4 0 6  0.8 m, 
" -  a 0 

Figure 2. Typical Row diagram in the m S m d  spa= for the ~m: we show ody the fust 
quadram The flow lines mnespond to basin boundaries and valley bottoms. Jn figures 2 and 
5,  circles refer to repellors, crosses to saddle points and full dots to atlracton. The basin of the 
non-relrieval amactor is shaded, and that of the wnfused atlractor is dotted. 

The first-order term implies that the non-retrieval fixed point is an attractor  form^ i 1, 
i.e. for a > ab 2/(2 + IC) M 0.39; and for a e ab the non-retrieval fixed point becomes 
a repeller. 
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The basin structure of the system is determined by the existence and location of the 
other fixed points. For a < a b  there are saddle points located on both the ms- and md-axes, 
leading to basin edges as illustrated in figure 2(a). 

By considering the third-order terms in (30) as well, we ObSeNe that for a > Cub, 
a saddle point bifurcates from the non-retrieval fixed point (figure 2(b)). This saddle 
point lies on the boundary separating the retrieval and non-retrieval basins. In the (upper) 
vicinity of the phase line a = a b ,  this point is located at (m,,md) = ( m l , m l )  with 
m: E 2(1 - m K ) / ( l  -n/6) c( (a! -ab). 

Furthermore, above the phase line a = a b  and for Q =- QT = r / 3  - 1 w 0.047, 
a repeller on the m,-axis bifurcates from the non-retrieval fixed point (figure 2(b)). This 
repeller also lies on the boundary separating the retrieval and non-retrieval basins. In 
the (upper) vicinity of the point (ab, QT), this repeller is located at (mz, 0) where m: E 
4(1- ~ K ) / ( Q  + 1 -z/3) c( (a - ab)/@ - QT). For higher values of a, this repeller 
merges with the saddle point on the m,-axis, leading to a discontinuous widening of the non- 
retrieval basin along the m,-axis and a change of flow behaviour from that of figure 2(b) to 
figure 2(c). The phase line of this discontinuous transition in the a-Q s ace is determined 
by the merging of the double solutions of the equation m = e r f ( m K / & m ) ,  i.e. 
it happens exactly when @/am)erf(mK/J2(1 - Q+m2)). 

The regions of existence of the attractors and repellers are shown in figure 3. The phase 
lines separate the space into three distinct phases for a < 1, and their corresponding basin 
structures are shown in figures 2(aHc) respectively. 

WR2 

Figure 3. Phase diagram of fhe FlN in the a-Q 
space. Phases as described in the texL ’.O 0.2 O L  0.6 

(a )  wxi-wide, perfect retrieval (two valleysjwith (m;, m;) = (1,l). The basin of 
attraction is maximal with two ‘valleys’t in flow-space. This occurs for a -= ab. 

(b) UN2-unilaterally narrow retrieval (two valleys)-with (mf, m;) = (1, 1) and (0,O) 
coexisting. The retrieval basin is narrowed for a > a b  such that retrieval is not possible for 
an initial state near the md-axis. However, selective retrieval of the correlated patterns is still 
possible for initial states near (but not on) the m,-axis; hence the narrowing is ‘unilateral’. 

(c) BNl-bilaterally narrow retrieval (one valley)-with (mz, m;) = (1, 1) and (0.0) 
coexisting, but the retrieval basin is narrowed everywhere along both the m,- and md-axes; 
hence ‘bilaterally’ narrowed. This occurs for sufficiently high values of a. 

t When we use topographic terminology we do so in analogy with classical motion under p v i l y .  Note that here 
and below the number of valleys refers to ihe rehieving section of phase space only. 
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The transition from wide retrieval to the other two phases is continuous, whereas the 
transition from the unilaterally narrow to the bilaterally narrow phase is discontinuous. Note 
that no confused phase is present. Only when the network state starts exactly in a confused 
(md = 0) initial configuration will it remain confused. 

One can interpret the shrinking of the retrieval basins and the evolution of the basin 
boundaries as the result of two competing physical tendencies. On the one hand, increasing 
the storage level (I tends to stabilize the non-retrieval state. On the other hand, increasing 
Q reduces the Hamming distance between the retrieval attractors on either side of the m,- 
axis ((m:, m;) = (1.1) and (m:, m;) = (1, -1)). As the basins associated with the two 
patterns approach each other, they cooperatively lower their barrier on the m,-axis. This 
effect is particularly strong for higher values of m,. Whereas for Hebbian networks the 
interference of the patterns is so severe that the confused attractor is observed in a wide 
range of parameter space, forPIN the interference is less excessive but the cooperative effect 
of the correlated pattems is still manifested in the flow behaviour. 

One may distinguish two regimes of Q. For Q < QT the ‘barrier’ along the m,-axis is 
high. On increasing (I through the non-retrieval fixed point.is able to extend its attracting 
power along both the m,- and md-axes, and the system changes from wide to bilaterally 
narrow retrieval directly, the saddle points on the ma- and md-axes moving in towards (0,O) 
and then up the diagonal. However, for Q > QT the barrier along the m,-axis is lowered 
by the cooperative effect of the correlated pattems. As a result, the attracting power of 
the non-retrieval attractor is reduced along the m,-axis, when compared with the md-axis, 
and the system has an intermediate phase of unilaterally narrow retrieval. When these two 
competitive forces are of comparable strength, we find a tricntical point with an additional 
line of discontinuous transitions joining the line of continuous transitions. 

3.3. The maximally stobie network 

For the MSN, the performance function is gMSN(A) = @(A - K ) .  Using (15). the maximal 
stability K ~ S ~  is given by (I-‘ = 1-z Dt(xMSN - t )Z.  Combining (6) and (16) the retrieval 
map reduces to 

where R,y/d represents the functions &, Ad in terms of ts, td used in the evaluation of fs/d 

respectively. They are given in appendix B. The double integrals in (31) can be further 
reduced to single ones if one devises for each sector of integration a suitable rotation in the 
( r s ,  fd) plane. This completes the formulation of the iterative maps. The analysis of (31) 
will, however, only be given for T = 0. 

As shown in figures 4 and 5,  the phase structure in the space of (I and Q is very rich. 
Thus we first describe the four phase lines separating the various phases. Line 1 is defined 
by the bifurcation of the non-retrieval fixed point along the md-axis as a is reduced (as 
illustrated in the change from figure 5(b) to figure 5(a)) and is given by, =(Ad)d = 1, 
where we use the shorthand ( f)r,d I,, Dt,Dtd f (ts, fd). Similarly line 2 is defined as the 
bifurcation of the non-retrieval fixed point along the m,-axis as (I is changed (as illusmted 
in the change from figure 5(b) to figure 5(c), or from figure 5( f )  to figure 5(g), or from 
figure S(e) to figure Scf)), and is given by 

Line 3 indicates the bifurcation of a saddle point on the m,-axis in the (transverse) md- 

direction (as illustrated in the change from figure S(c) to figure 5(d), or from figure 5(b) to 

= 1. 
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0 60 

0.55 

0.50 

0.45 

0.CO 

0 0.2 0.4  0.6 

Pigure4.Phasediagaraofthe~sNintheQ-U 
spaa. Phasesasdesuitedinthetext The 
large i+ in the leff upper "er is a sketchy 

of the critical region for small Q. 
Lines 1 io4 m p n d  to the sequence of phase 
lirrs as observed for inmasing 01 and high Q. 

figure 5(f)). Furthermore, the transitional behaviour across this line is determined by the 
value of afd/amd at the saddle point (m. 0). where ( e r f ( a A d ? z / d m ) ) s  = m, 
and 

The saddle point is stable in the transverse direction if afd/amd 6 1, unstable if otherwise. 
On line 3, afd/amd = 1. 

Line 4 describes the discontinuous annihilation of a pair of fixed points on the m,- 
axis (as illustrated in the change kom figure 5(d) or figure 5(g) to fi 5(e)), i.e. where 
two non-zero solutions of the equation m = (erf(amAs/d*))s merge and 
disappear. In other words .3fs/am, = 1, where 

Line 1, 2 and 3 meet at (a,, Ql) % (0.42,O). Lines 2 and 4 are analogues of the 
two phase lines in the PIN. Therefore they join at a hicritical point corresponding to 
(ab. Qr)  in the case of PIN. Specifically, the tricritical point for the MSN is given by 
((Yz, Qz) sz (0.429,0.118), which is determined by the vanishing of both the thirdader 
coefficient ((AJs - (Af),/3) and the first-order coefficient (-1 + of an 
expansion of ( f s  - m,) in the m,direction around the origin. 

It is interesting to note that lines 3 and 4 touch each other at the tetracritical point 
(013, Q3) ,w (0.435,0.180). In the vicinity of this poinc l i e  3 divides the region below line 
4 into three phases: (i) both fixed points on the m,-axis are stable in the transverse (here 
md-) direction (figure 5(g)); (ii) the fixed point with the smaller value of m is transversely 
stable and the other unstable (figure 5(c)); (iii) both fixed points are transversely unstable 
(figure 5(d)). It is important to note that since the retrieval functions are continuous in m, 
and md. regions with behaviour (i) and (iii) must be separated by a region with behaviour 
(ii). On line 4, however, the fixed points merge, and a direct transition between behaviour 
(i) and (iii) is possible. This accounts for the existence of the tetracritical point 

Finally, we comment that lines 2 and 3 intersect each other at the point (ad, Q4) M 
(0.431,0.14) and the 'endpoints' for Q = 1 of lines 1 through 4 are given by a = 0.396 
(line I), (Y 0.42 (line 2), a sz 0.44 (line 3) and (I = 2 (line 4). 
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Figure 5. TyQical flow d i n g ”  in the ms-md space for, the MSN; description a8 in figure 2 
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We can thus distingcish the following eight phases, examples of which are shown in 
figures 5 ( a M )  respectively: (a) WR2, wide retrieval (two valleys); (b) MI, wide retrieval 
(one valley); (c) UNI,  unilaterally narrow retrieval (one valley): (a’) UNZ, unilaterally narrow 
retrieval (two valleys); (e)  BN, bilaterally narrow retrieval (one valley); (f) BC, bilaterally 
confused (one valley); (8)  TA, triple attractor (one valley); ( h )  NR, non-retrieval. 

The non-retrieval attractor is stable above line 2, i.e. in the UNI, UN2, BN and TA phases. 
The retrieval attractor is stable in all phases for 01 c 2. However, we note that in the BC and 
TA phases, we also find stable attractors on the m,-axis corresponding to stable confused 
states. The phases WRZ, UN2 and BN have a similar structure to the three phases in PIN. 
Comparing the phase diagrams of MSN and PIN, the analogues of the phases WR1, UNI, BC 
and TA of the MSN can be considered as degenerate and lying on the line a = at, in the PIN. 

As in the PIN, the phase behaviour is govemed by the competition between the attracting 
power of the non-retrieval fixed point and the cooperative effect of the correlated patterns. 
This may be observed in the phase changes undergone by the system from the wR2 phase at 
low a to the BN1 phase at high 01. At high Q, the phase change follows the sequence WRZ -+ 

WRI -+ UNI -+ UNZ -+ BN -+ NR. Since the attracting power of the non-retrieval attractor 
along the m,-axis is partially offset by the cooperative attracting power of the correlated 
patterns, network states in the vicinity of the m,-axis can be distinguishably retrieved up 
to a relatively high value of a, which componds to the first four in the sequence of six 
phases above. On reducing Q, however, the cooperative attracting power of the correlated 
pattems is weaker, and different scenarios for increasing a become possible. One finds first 

BN -+ NR and then WRZ -+ WRI -+ BC -+ BN -+ NR. In these sequences, respectively Only 
the first three, two and two phases can have network states in the vicinity of the m,-axis 
distinguishably retrieved. 

It is interesting to note that the confused attractors only exist in the BC and TA phases, 
which are very small in extent, and can be considered as mere transient phases between the 
major phases. This confirms that the MSN has a high degree of selectivity, and confused 
states are apparently not favoured. 

the Sequences WR2 -+ WR1 -+ UN1 -+ TA 3 BN -% NR, then wR2 -+ WRI -+ BCI -+ TA -+ 

4. Conclusion 

We have studied in detail the process of basin shrinking and the retrieval of a pair of 
correlated patterns among many uncorrelated pattems for increasing loading levels and 
different degrees of correlation. We have investigated the issue of pattern selectivity for 
the Hebbian, the pseudo-inverse and the maximally stable networks, viewed as networks 
designed to optimize appropriate performance functions. The analysis can, in principle, be 
extended to other networks, optimizing arbitrary performance functions. We have found 
three different types of attractors; non-retrieval, retrieval and confused attractors, together 
with interesting features in the phase diagrams. 

The behaviour of the system is the result of two competing factors, namely the 
correlation Q between the special pair of pattems and the overall pattern storage ratio 
a. Generally speaking, higher values of (Y imply more interference on the memory states 
and favour non-retrieval. On the other hand, higher values of Q imply that the retrieval 
attractors of the two marked patterns become closer in the network configuration space, and 
either the confused attractor (as in the Hebbian network) or the retrieval attractors (as in 
PIN or MSN) are favoured. The evolution of the various attracting powers in the parameter 
space gives rise to the phenomena of basin encroaching, shrinking, splitting and wedging 
[23], resulting in very rich phase diagrams. 
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As illustration of encroaching, take, for example, the transitions of the triple attractor 
phase (TA) in the MSN. On increasing Q, the attracting power of the retrieval attractors 
increases along the m,-axis, as they cooperatively squeeze down the basins in this region. 
This results in the basin of the confused attractor being encroached by the retrieval attractors, 
leading to the unilaterally narrow retrieval phase (UNI). On increasing a, the non-retrieval 
attractor is favoured, and it encroaches on the neighbouring confused attractor, resulting 
in the bilaterally narrow retrieval phase (BN). On reducing CY, the non-retrieval attractor is 
weakened and is encroached by the neighbouring confused attractor, yielding the bilatemlly 
confused phase (BC). 

An example of basin shrinking is found in the transition from UN2 to BN where the basin 
of the non-retrieval attractor expands at the expense of the retrieval attractor on increasing 
CY (or reducing Q). The tmnsition from UN1 to LINZ on increasing a! is an example Of 
basin splitting. Here the retrieval basin splits from one valley to two valleys because of 
the uneven development of the strength of the attractors in different regions of the network 
configuration space. Within the mz phase, we also expect the non-retrieval basin to wedge 
into the retrieval basin along the m,-axis, since the basin boundary meets this axis at a 
repeller (were the meeting point a saddle point, the basin boundary would be normal to 
the axis). On increasing a, the tip of this wedge-shaped basin finally merges with another 
saddle point on the axis, resulting in a transition to the BN phase. 

Perhaps the most skiking observation is the effect of pattem correlation on the PIN and 
MSN when compared with the Hebbian network. This is due to the fact that the Hebbian 
network consists of wide and mutually interfering basins, whereas the PIN and MSN have deep 
and less interfering basins. When the distance between the two correlated retrieval attractors 
in the configuration space is reduced on increasing Q, the two basins in the Hebbian network 
interfere severely with each other. Thus the confirsed attractor is favoured at high values of 
Q. On the other hand, the two basins in PIN or MSN~are deep and less interfering. Instead of 
weakening the banier between them on increasing Q, they cooperatively squeeze its width. 
Thus the retrieval attractors are favoured at high values of Q. 

However, we remark that the present analysis h.as been restricted to the regime 
Q- - O(Co). For extremely high pattem correlation, say Q- - O(C-'), the present 
analysis has to be modified. The stability parameters in the PIN and MSN may deviate 
from the values given in section 3 which are applicable to lower pattem correlations, and 
confused states may exist in these systems. In fact. in the p + 0 limit, we may consider 
the case of storing just two correlated pattems as we did for the Hebbian network at the end 
of section 3.1. In this case the configuration of the weights J;.j becomes identical to that 
of the Hebbian network, namely that for i E s, Jil = I/- for j E S and Jij = 0 for 
j E D, whereas for i E D, Jij = l / m  for j E D and Jij = 0 for j E S. The analysis 
for the Hebbian network case thus shows that both the PIN and MSN become confused for 
Q 1 -3.7O/C. We expect that for general values of CY all retrieving networks will exhibit 
confusion in the region of sufficiently high pattem correlation Q- - O(C-'). 

On the whole, this comparative study shows that both PIN and MSN have much higher 
selectivity than the Hebbian network. Recently, the retrieval properties of the MSN and the 
Hebbian network have been compared [24]. It was found that because of the different basin 
structures, the MSN has higher retrieval precision, higher storage capacity, simpler atLractors, 
but lower associativity and robustness. The high selectivity of the MSN is consistent with, 
and complementary to, these observations. It should therefore be interesting-although 
numerically involved-to consider the dependence of pattem selectivity on training noise 
as considered by Wong and Shemngton [71, since the Hebbian and the MSN correspond to 
the two extreme limits of the training noise level. Arbitrary training noise levels would 
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allow an understanding of intermediate regimes between the Hebb and the Gardner rules, 
possibly casting further light onto the problem of confusion in ANN. Also, such a training 
noise variation might be one possibility to obtain a network of tunable selectivity (although 
others relying on modification at the training stage might be preferred). 

However, we should point out the relevance of the weight space structure when 
comparing the selectivity of different learning rules. Consider a node i with 6; = -e; 
(i.e. it belongs to the set D). Using (28) for PIN, we note that the aligning field confAbution 
Ad from those input neurons which can differentiate between the two patterns is equal to 
K ~ I N / ~ ,  which can be made arbitrarily large when the pattems become more and more 
correlated. (This applies to the case when Q- << 1 but Q- is still 6(Co), which has been 
considered in this paper: the case of Q- being nearer to 0 is currently under consideration.) 
Similarly for the MSN, the aligning field Ad for nodes i E 2) is given by "{td, K/-) 

in the limit Q- 1. Thus the fact that the PIN and MSN do not get confused at high 
correlation is related to the ability of the network to make the aligning field arbitrarily large 
at sites where are different. This is possible for a spherically constrained J, since 
it can take any position in the weight space on the unit sphere. However, if the weight 
space is more constrained, as for example if J is only allowed to take king components 
(51 = 2~1). the corresponding MSN may have different behaviour at high Q. 

The above analysis has been restricted to deterministic retrieval. An extension to 
probabilistic (T # 0) retrieval would be straightforward. Discussion of asymptotic retrieval 
has also been restricted to the case of dilute asymmetric networks. Equation (3) continues 
to apply to a first-step iteration even in highly connected cases but further analysis requires 
a different method. 

Finally, we discuss the pattem selectivity of networks in the presence of external fields. 
In our recent work [25,26] we have investigated the effects of external fields on the retrieval 
properties of highly diluted ANN with general classes of learning rules. We showed that 
external fields could increase the size of basins of attraction and improve the retrieval 
quality. Here we propose another application for the use of external fields. As we have just 
seen, a system trained with the Hebb rule is confused in certain regimes, i.e. it loses the 
ability to distinguish correlated patterns. To avoid this during retrieval one could apply an 
external field having finite overlap with pattem one or two at the sites for which the pattern 
bits are different (or at least a subset of them). 

and 

Acknowledgments 

We acknowledge financial support from the SERC. One of us (AR) would like to thank the 
Studienstiftung des deutschen Volkes and Corpus Christi College, Oxford for the award of 
two scholarships. We appreciate motivating discussions with Eytan Domany at the initial 
stage of this problem and acknowledge further fruitful discussions with Timothy Watkin 
and Richard Penney. 

Appendix A 

Here we will outline briefly the derivation of the aligning field distributions. We want to 
train our network so that its specific choice of interactions minimizes the energy function 
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To do so we introduce, following [19], a Gibbs measure on the configuration space 

where ,9 is the inverse of the annealing temperature which will later on be decreased to 0 
to settle the system in its energy minimum. Using replicas to calculate the pattem averaged 
free energy we get 

where (Y E { I , .  . . ,U,. . . , n) is the replica index (not to be confused with the storage 
capacity), and A$d 5 E& 6' JPC) /a. Here we average over the couplings with 
the properly normalized Boltzmann weights and then over the possible realizations of 6 for 
the sets S / D  of sites correspondingly. 

The replica calculation follows along the lines of [NI. One can write the field 
distribution as' 

The functions GJ and GA are given by 

but in the n + 0 limit the first exponentiaLterm in (A.4) vanishes leaving only the integral 
to be evaluated. Within the framework of replica symmetry and in the limit f i  --f 00 we 
get the result reported in equations (15>-(17). 
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Appendix B 

In order to find pSld for the MSN we have to maximize the function (17) with respect to As 
and Ad.  This maximization leads to four different regions in the ts - td space. Form,, we 
find the mapping R, to be 

The region boundaries are shown in figure BI(a). 

Figure Al.  Regions of integration for khe fr - fd s p a  

For we find 
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